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Abstract

The Self�Organizing Map �SOM�� a widely used algorithm for the unsupervised learning

of neural maps� can be formulated in a low�dimensional �feature map� variant which

requires prespeci�ed parameters ��features�� for the description of receptive �elds� or

in a more general high�dimensional variant which allows to self�organize the structure

of individual receptive �elds as well as their arrangement in a map� We present here

a new analytical method to derive conditions for the emergence of structure in SOMs

which is particularly suited for the as yet inaccessible high�dimensional SOM variant�

Our approach is based on an evaluation of a map distortion function� It involves only

an ansatz for the way stimuli are distributed among map neurons� the receptive �elds of

the map need not be known explicitely� Using this method we �rst calculate regions of

stability for four possible states of SOMs projecting from a rectangular input space to a

ring of neurons� We then analyze the transition from non�oriented to oriented receptive

�elds in a SOM�based model for the development of orientation maps� In both cases� the

analytical results are well corroborated by the results of computer simulations�
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�� Introduction

The activity�driven self�organization of neural maps is a central paradigm in the onto�

genetic development of the brain� Many models for such processes were introduced and

analyzed� often in the context of speci�c developmental phenomena like the formation of

ocular dominance and orientation columns in the visual cortex �examples include von der

Malsburg�s ��
��� early work on the formation of orientation columns� or Miller et al��s

model ��
�
� on the formation of ocular dominance bands� for a recent review see Erwin et

al�� �

��� Other map formation algorithms were formulated in rather general terms and

found applications not only in the biological realm� but also as part of technical systems�

This latter class of more abstract map algorithms includes Kohonen�s self�organizing map

algorithm �SOM� for a general discussion see Kohonen� �

�� Ritter et al�� �

��� The

SOM not only formed the basis of several speci�c models for the development of biological

maps �Ritter� �
��� Obermayer et al�� �

�a� Obermayer et al�� �

�b� Obermayer et al��

�

�� Goodhill� �

�� Wolf et al�� �

	� Bauer� �

��� but was also used as a neighborhood

preserving vector quantizer in signal processing tasks�

The SOM�algorithm can be formulated in two di�erent ways� a high�dimensional and a

low�dimensional variant� The di�erence between the two variants is best illustrated in the

context of a sensory map� Here� stimuli in a sensory layer are projected in a topographic

fashion onto the neurons of the map� In the high�dimensional SOM� the stimuli are

formally described by an activity distribution over many sensory channels which make

up the sensory layer �Obermayer et al�� �

�a� Obermayer et al�� �

�b� Goodhill� �

���

Correspondingly� the receptive �elds of the neurons are described as synaptic weight

distributions in the high�dimensional space of sensory channels� An alternative� low�

dimensional description can be used� if particular �features� of the stimulus and receptive

�elds can be expected to represent the nature of the map su�ciently well� Examples

where this reduction to a so�called self�organizing feature map �SOFM� has been used

include models for the formation of orientation and ocular dominance maps �Obermayer

et al�� �

�� Bauer� �

�� as well as the modeling of retinotopic maps �see� e�g�� Wolf et

al�� �

	�� In the latter case� the relevant features are the retinal positions of stimuli and

receptive �elds� given by their resp� centers of gravity only� Simulations of SOFMs require

�



a substantially smaller numerical e�ort� in addition more theoretical results are available

for this kind of map� However� the feature space ansatz requires a priori assumptions

about the structure of receptive �elds� whereas the high�dimensional SOMs can develop

both the arrangement of receptive �elds in the map and the receptive �eld structure itself�

Furthermore� the necessity to extract a small number of parameters from a stimulus in

the SOFM case precludes the investigation of the e�ects of more complicated stimulus

shapes on the self�organization process�

Theoretical investigations of SOMs or SOFMs often aim at relating the emergence of a

particular structure in the map to parameters of the adaptation process or the stimulus

ensemble� An archetypical problem in this context is the transition from a �at map to a

distorted map as a consequence of a dimension mismatch between input space and output

space� if the stimulus amplitude along the additional dimensions exceeds a critical value�

For the low�dimensional SOFMs Ritter and Schulten ��
��� analytically derived critical

values for the parameters such that the dimension mismatch would induce the distorted

structure in the map� Their method was subsequently adapted by Obermayer et al� ��

��

to analyze the emergence of orientation and ocular dominance structure and by Bauer

��

�� to investigate the impact of areal geometry on the preferred orientation of ocular

dominance bands in SOFM�based models for the development of visual maps�

Considering the potentially richer repertoire of self�organization phenomena of the less

restricted high�dimensional SOMs� a comparable method for their analysis would be de�

sirable� Here we present a new and simple approach to compare di�erent states of SOMs�

and in this way to calculate critical parameter values for phase transitions of these maps�

After a short introduction to SOMs and SOFMs in the next section� our method is de�

scribed in detail in the third section� In the fourth and �fth section we then apply the

method �rst to a test problem of abstract nature� then to an analysis of the formation of

oriented receptive �elds in a SOM�model for orientation maps in the visual cortex� As we

will see� in both cases the high�dimensional SOM behaves in a qualitatively di�erent way

from the low�dimensional SOFM� A discussion of our approach and its results concludes

the paper�
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�� High�dimensional SOMs and low�dimensional SOFMs

In a Self�Organizing Map �SOM� stimuli v are projected onto neurons r� located at the

vertices of a �typically two�dimensional� output space lattice� The stimuli v are given as

an M �dimensional activity distribution over input channels i� normalized to a constant

sum S�

MX
i

vi � S � �����

Each neuron r has associated with it a receptive �eld which is also formalized as an M �

dimensional vector wr� A stimulus v is mapped onto that neuron s whose receptive �eld

ws has the largest overlap with the stimulus�

s � arg max
r

�wr � v� � �����

This amounts to a winner�take�all rule� a strong nonlinearity which in a biological context

is explained as a consequence of a strong nonlinear lateral cortical interaction �Kohonen�

�

�� �

��� The SOM is adapted to a speci�c projection task by appropriate changes of

the receptive �eld vectors wr� To this purpose� a sequence of stimuli is presented to the

map� for each v the current best�matching neuron s is determined and a learning step

�wr � �hrs�v�wr� �����

is carried out� Here� � is the size of learning steps� hrs denotes a neighborhood function�

usually chosen to be of Gaussian shape�

hrs � e�
jjr�sjj�

��� � ���	�

which enforces neighboring neurons to align their receptive �elds� Via the neighborhood

function h the property of topography is imposed on the SOM� Summing Eq� ����� over

the input channels i shows that in the course of learning� the normalization ����� also

induces a �linear� normalization of the weight vectors wr� The region in stimulus space

which will be mapped onto a particular neuron r is called the Voronoi cell �r of this

neuron�

Instead of using the full stimulus distribution v and the receptive �eld distributions wr

a Self�Organizing Map can also be formulated in terms of features �eg�� the centers of

	



gravity� �v and �wr which are extracted from v and wr by application of a linear operator

R�

�v � R�v�� �wr � R�wr� � �����

Application of R to ����� reveals �cf� Ritter et al�� �

�� that the �wr obey dynamics of

the same form as that of the wr�

� �wr � �hrs��v� �wr� � �����

This identical form suggests that the low�dimensional feature map� now called a SOFM�

should yield very similar� if not identical� results as the full SOM as far as the representa�

tion of the features is concerned� However� the mapping rule ����� cannot be transformed

in a similarly stringent fashion� as the dot product is not a useful measure in the feature

space �Sutton and Reggia� �

	�� Instead� the SOFM�algorithm employs the minimization

of the Euclidean distance between �wr and �v�

s � argmin
r

jj �wr � �vjj � �����

Equations ����� deviates from ������ because only for square�normalized vectors the mini�

mumEuclidean distance corresponds to the maximumdot product� Even more important�

the distance measures in ����� and ����� operate on vectors in di�erent spaces which can

yield di�erent best�matching neurons even if the normalization issue is ignored �see Fig�

� for an illustration� for a more detailed discussion of the relation between SOMs and

SOFMs for the special case of ocular dominance maps� see Miller� �

��� Hence� despite

the similarity of the learning eqs� ����� and ������ the di�erent mapping rules ����� and

����� prohibit a transfer of results from one variant of the map algorithm to the other�

�� Evaluating Tesselations of the Stimulus Space

One goal of theoretical investigations of map formation algorithms is to relate the classes

of states emerging in a map to parameters of the stimulus ensemble or the map formation

algorithm �like� e�g�� the width � of the neighborhood function�� Of particular interest

are those values of the parameters where the resulting structure of the map undergoes

a qualitative change� a phase transition� For SOFMs with mismatching input and out�

put space dimensions� consideration of the �uctuations of the map about a state with
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trivial structure led to conditions on the parameters when the trivial state ceases to be

stable �Ritter and Schulten� �
���� For parameter values beyond the critical ones� the

map evolves to a di�erent state �the structure of which� however� is not revealed by this

analysis��

A similar method to determine instabilities in high�dimensional SOMs has as yet not been

available� Part of the reason may be that for high�dimensional maps it is di�cult �if not

impossible� to directly make an ansatz for the state of the map� i�e� for the receptive �eld

vectors wr� If the wr were available� di�erent states of the map could be compared using

the �naive energy function�

Ew �
X
r

X
r
�

X
v
���

r
�

�v� �wr�
�e

�
�

jjr�r
� jj�

���

�
� �����

which can be used to analyze the map formation in the case of a discrete set of stimuli

�Ritter et al�� �

��� �r denotes the subset of stimuli which are mapped onto r� Even

though the SOM learning dynamics does not proceed along the gradient of this function

�or any other energy function� in the case of a continous stimulus ensemble �Tolat� �

��

the deviations become small in the limit of an ordered map with large values for � �Erwin

et al�� �

��� It is also known that modi�cation of the SOM winner rule lead to a map

formation algorithm following exactly the gradient of an energy function �Heskes and

Kappen� �

�� Luttrell� �

	�� Therefore� a sensible strategy to determine the �nal state

of a SOM is to compare distortion functions for di�erent map states�

However� evaluation of Ew requires explicit knowledge of the receptive �eld vectors wr

for which a direct ansatz is in general di�cult to make� Therefore� we here propose to

focus not on the wr themselves� but rather on the tesselation they induce in the stimulus

space� i�e� on the sets �r� This tesselation can be of quite simple form� even if the actual

shape of the receptive �elds wr is not �see examples in sections 	 and ��� Furthermore�

in SOMs� most continuous changes of map or stimulus parameters leave the tesselation

unaltered� even though the wr are also changed continuously� whereas qualitative changes

of map states usually correspond to changes of the tesselation�

�



Once an ansatz for the �r has been made� the stability of the resp� map states can be

compared using either of two� rather similar� distortion functions� First� one might think

of computing the wr as superpositions of stimuli�

wr � c��
X
r
�

X
v
���

r
�

v�e

�
�

jjr�r
� jj�

���

�
� �����

c �
X
r
�

X
v
���

r
�

e

�
�

jjr�r
� jj�

���

�
� �����

and put this result into the energy function ������

Ew �
X
r

X
r
�

X
v
���

r
�

�
�v� � c��

X
r
��

X
v
����

r
��

v��e

�
�

jjr�r
�� jj�

���

��
A
�

e

�
�

jjr�r
� jj�

���

�
� ���	�

However� Eq� ���	� turns out to be prohibitively complicated for analytical evaluation

and� therefore� is not considered in the remainder of this article�

Instead� we make a further simplifying step� disregard the precise shape of receptive �elds

altogether� and consider the distortion function

Ev �
X
r

X
r
�

X
v
���

r
�

X
v��r

�v� � v��e

�
�

jjr�r
� jj�

���

�
� �����

which evaluates the variance of the stimuli not with regard to the wr� but with regard

to the set of stimuli within the Voronoi cell �r� Assuming an equal number of stimuli

per Voronoi cell� the distortion measures ���	� and ����� are minimized for the same

tesselations in the limit of � � �� Assuming further a mirror�symmetry of the Voronoi

cells with respect to the neuron output space positions� the deviations are small for non�

vanishing �� Both assumptions are not critical and allow us to use an evaluation of Ev

with regard to various sensible tesselations of the stimulus space to compare the relative

stability of di�erent map states� and to compute state diagrams of SOMs� As we will see

in the next two chapters� Ev can be calculated for high�dimensional SOMs in a sometimes

surprisingly simple fashion�

�� Analyzing a phase transition in a ��neuron map

As a �rst example we consider SOMs which map a rectangular input space onto a chain of

	 neurons� The input space is discretized as a 	M � �sM lattice� where s is a parameter�
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Periodic boundary conditions are applied in the x�direction of the input rectangle and the

output chain of neurons� The stimuli are assumed to be Gaussians of width �stim � M �

centered at randomly varying positions �x�� y�� in the input rectangle�

This example constitutes a 	M � �sM �dimensional problem and is treated as such in

the following� However� since the input channels are coupled due to the �nite extension

of the stimuli� and since the stimuli are parametrized in a two�dimensional space� we

can identify the Voronoi cells of the neurons with regions in this two�dimensional space�

In particular� we can discuss the tesselations of the high�dimensional stimulus space in

terms of the shape of regions �called �tesselation regions�� in the parameter space� Several

tesselations are imaginable�

� All stimuli map onto just one neuron� This constellation is unstable and is not

further discussed�

� All stimuli are mapped onto either of two neurons �not neighboring in the output

space�� with the two intermediate neurons never winning� For symmetry each of

the possible winner�neurons is best�matching for half the stimuli� For distortion

minimization this group of stimuli forms a connected region in the two�dimensional

parameter space �see Fig� �a�� The never�winning intermediate neurons adjust their

receptive �elds as the average of their neighbors� receptive �elds� Such a constella�

tion is numerically observed �Fig� �f� and stable� it is analogous to a low�dimensional

SOFM which tries to cover a strongly bent input space and has to spend a few neu�

rons in �empty space� in order to do so �see Fig� ��� in Kohonen� �

�� as an

example��

� The stimuli can also be split among all four neurons� with each neuron being best�

matching for a quarter of the stimuli� Several shapes of the corresponding tesselation

regions are imaginable� some of which are observed �Figs� �b�e�g�j��

The question now arises� which of the above states is attained for each combination of

parameters s and �� Let us consider �rst the two�neuron type solution �Fig� �a� vs� the

group of four�neuron type solutions �Figs� �b�e�� In the limit of a small spatial stimulus

�



extension� most pairs v�v� have negligible overlap� and their squared di�erence takes on

a value �v� v��� � �v� � c�� Neglecting the impact of stimulus pairs with appreciable

overlap for the moment� the Ev can be evaluated approximately� leading to

Ev�� �
X
r����

X
v��r

X
r
�����

X
v
���

r
�

�v � v���e�
jjr�r

� jj�

���

� ���M � �sM�c�
�
��M � �sM�e� � ��M � �sM�e

��
���

�
� �	���

Ev�� �
�X

r��

X
v��r

�X
r
���

X
v
���

r
�

�v � v���e�
jjr�r

� jj�

���

� 	�M � �sM�c�
�
�M � �sM�e� � ��M � �sM�e

��
��� � �M � �sM�e

��
���

�
� �	���

Here� the leading factor of � �resp� 	� results from the sum over r� the following factor of

�M ��sM �resp� �M ��sM� from the sum over v � �r� and the further factors of �M ��sM
�resp� �M � �sM�� result from the sums over v� � �r

� � Equating Ev�� and Ev�� yields the

transition between the corresponding two map solutions� at

e� � e
��
��� � �e

��
��� � � � ��
� � �	���

So the map will attain a two�neuron type solution at � � ��
�� and a four�neuron type

solution at � � ��
�� independent of the elongation parameter s�

In a second step we now consider the di�erent possible geometries for the four�neuron type

solutions� Since the respective tesselation regions are of the same size� the di�erent four�

neuron solutions yield the same values for Ev if stimulus overlap is neglected� Instead� we

now have to consider the number of overlapping stimulus pairs� and the fraction of stimulus

pairs overlapping across the boundaries of tesselation regions� To cast these considerations

into mathematical terms we need to introduce further variables� For a stimulus v� let Nv

denote the total number of other stimuli�Nv�� the number of other stimuli mapping to the

same neuron� Nv�� the number of other stimuli mapping to nearest�neighbor neurons� and

Nv�� the number of other stimuli mapping to next�nearest neighbor neurons� Furthermore

let �Nv denote the total number of other stimuli which overlap with v� let �Nv�� denote

the number of other stimuli which overlap with v and map to the same neuron� let �Nv��

denote the number of other stimuli which overlap with v and map to a nearest�neighbor

neuron� and let �Nv�� denote the number of other stimuli which overlap with v and map






to a next�nearest neighbor neuron� Finally we denote the average contribution to Ev of

a pair of stimuli with appreciable overlap by c��

c� �

P
v
���v�v

� � v��P
v
���v �

�

where  v denotes the set of stimuli which have centers of gravity closer to the center of

gravity of v than the stimulus width ��stim��

Using these quantities� the contribution sv of stimulus v to Ev amounts to

sv � �Nv��c�e
� � �Nv�� � �Nv���c�e

� �

�Nv��c�e
� �

��� � �Nv�� � �Nv���c�e
� �

��� �

�Nv��c�e
� �

��� � �Nv�� � �Nv���c�e
� �

��� � �	�	�

The stimuli v di�er in their position relative to a tesselation region boundary� L� stimuli

are located close to a boundary to a nearest�neighbor neuron� i�e� have their centers of

gravity closer to the boundary than the stimulus width� For these we have �Nv�� � �Nv���

�Nv�� � �Nv��� �Nv�� � �� Further L� stimuli are located close to a boundary to a next�

nearest�neighbor neuron � �Nv�� � �Nv��� �Nv�� � �� �Nv�� � �Nv�� for these�� The rest

of N � L� � L� stimuli have �Nv�� � �Nv� �Nv�� � �� �Nv�� � �� Using the sum relation

�Nv � �Nv��� �Nv��� �Nv��� and collecting terms independent of the lengths of the boundaries

L�� L�� we �nally obtain

Ev �
X
v

sv

� const� �
L�

�
�e� � e�

�
��� � �

L�

�
�e� � e�

�
��� �� �N�c� � c�� � �	���

Using Eq� �	���� and

L� � ��s� L� � �� �line� like� �	���

L� � � � �s� L� � �� �box� like� �	���

L� �
�

cos�
� L� � � � 	 tan �� �house� like� �	���

L� �
��s

cos�
� L� � �� �wedge� like� �	�
�

the di�erent four�neuron type solutions depicted in Figs� �b�e can now be compared ��

denotes the angle between the oblique part of the tesselation region boundary and the

��



horizontal�� Obviously� the wedge�like solution has always a longer boundary L� than

the line�like solution� and� hence� has always a larger value of Ev� This corresponds well

to the fact that we never observed such solutions in simulations� A transition between

the box�like and the line�like solution takes place at s � �� The evaluation of the house�

like solution requires �rst an optimization with regard to the angle �� Performing this

optimization� and comparing the resulting Ev with the corresponding values for the box�

like and the line�like solutions numerically� we obtain the phase diagram depicted in Fig�

�a� Numerical simulations of maps for various values of � and s resulted in the phase

diagram depicted in Fig� �b� All di�erent states a� d were observed� and the transitions

between these states take place at approximately those values of � and s determined

from our approximate calculation of Ev� Considering that the di�erences between the

four�neuron type states are quite subtle� and that consistent numerical results require

long convergence times at small values of the learning step size� the coincidence between

analytical and numerical phase diagrams can be regarded as very good�

An interesting further aspect of this test problem is the comparison with the corresponding

low�dimensional SOFMs� Here� the problem comes down to a crudely discretized variant

of the dimension mismatch problem� solved by Ritter and Schulten ��
���� Even without

a detailed adaptation of their analysis to the present geometry� a roughly linear relation

between scrit� the value of s for �xed � for which the linear solution becomes unstable�

and � should be expected� Evaluation of our distortion measure Ev for SOFMs shows

that a box�like solution b� has the lowest energy among the possible non�linear solutions�

The transition from the linear solution c� to b� should take place at �see Appendix ��

s�crit �
� � � exp�� �

���
�� exp�� �

���
�

� � exp�� �

���
�

� �	����

Our numerical results for simulations of 	�neuron SOFMs� receiving input from an rectan�

gular input space of width 	 and height �s� agree quite well with this analytical result �Fig�

	�� Speci�cally� scrit does not depend on � for � � ��� and increases linearly with � for

� � ��� up to � � �� the maximum value for this geometry� Two factors contribute to the

remaining deviations between the constant scrit�� � ���� and the slope of scrit�� � �����

For small values of �� the map often failed to converge to classi�able states� resulting in

an error margin for the numerical transition values� Secondly� the error involved in the

��



replacement of equation ���	� by ����� may be responsible for the deviation of about ��!

in the regime of large �� Note that for � � ��� only the linear solution results analytically

as well as numerically� So� the high�dimensional SOM exhibits a two�neuron state� as well

as a ��independent transition from state b to c� whereas the low�dimensional SOFM has

no two�neuron states for principal reasons and a ��dependent transition from b� to c��

�� Phase Transitions in a SOM�Model for the Development of

Orientation Maps

A more interesting application of the SOM�algorithm has �rst been discussed by Ober�

mayer et al� ��

�a�� Using elongated ellipses as stimuli� these authors showed that the

SOM�algorithm is able to generate orientation maps as observed in the visual cortex� Maps

which were driven with stimuli of small or no elongation failed to develop orientation�

sensitive cells and� consequently� an orientation map �Obermayer� �

��� Here we set

out to calculate the properties of the transition between a map of orientation�insensitive

cells� resulting from stimuli with weak orientation� and a map of orientation�sensitive

cells� resulting from more strongly oriented stimuli� As in the previous example� our

calculation will be based on an approximate comparison of the distortion ����� for the

two tesselations of stimulus space which correspond to the two map solutions� In the

following two subsections we demonstrate two di�erent methods of evaluating Eq� ������

an analytic summation using a reduced stimulus set� and a numerical procedure� using

the full stimulus set�

��� Analytic Results with Reduced Stimulus Set

In order to simplify an analytic evaluation of the sums in Eq� ����� we reduce the model

to its essentials� In the present context this means using a stimulus ensemble which is as

small as possible yet rich enough to generate orientation maps� One such ensemble consists

of Gaussian stimuli� with half�widths �� and �� � ��� which come in two orientations only

�vertical and horizontal�� and which are centered at the positions of the input channels� A

�vertical stimulus� here means that the width of the �elliptic� stimulus in the y�direction

is ��� larger than the width �� in the x�direction� For a �horizontal stimulus�� �� and ��

��



are exchanged� We further assume that the input and output spaces are discretized such

that there is a one�to�one relation between input channels and map neurons�

In this reduced model� a non�oriented solution would have receptive �elds such that both�

the vertically and horizontally oriented stimuli centered at one input channel� would be

mapped onto the corresponding map neuron� With this mapping taking place at each

input channel we can conclude for symmetry reasons that the receptive �elds are non�

oriented� i�e�� do not have a single preferred orientation� Denoting by �ijjj the squared

di�erence between two vertical stimuli separated by a distance i in the x�direction� and by

j in the y�direction� and by �ijj�� �ij��� �ij�j the analogous di�erences� the distortion

Ev�non�ori for a map with non�oriented receptive �elds is

Ev�non�ori � N�
�X

i���

�X
j���

e�
i��j�

���

�
�ijjj ��ijj� ��ij�j ��ij��

�
� �����

Using the results for ���� derived in App� �� and replacing the sums of Eq� ����� by integrals

�in the limit of ��� ��� �	 ��� this leads to

Ev�non�ori �N�	�������
�

�
�	 � �����q

��
�
�� � �����

�

�
�� � ����

� 	

��� � ��� � ��

�
A � �����

In contrast� the stimulus ensemble could also be tesselated such that the vertical stimuli

at two neighboring positions are mapped onto one neuron� and the resp� horizontal stimuli

to a di�erent neuron �see Fig� ��� Obviously� the receptive �elds of the neurons would

have to be oriented for this tesselation� To take the neighborhood e�ects into account�

we assume that isoorientation domains are broad compared to the width of �� Averaging

over the appropriate orientation combinations we �nd

Ev�ori � N�

�X
i���

�X
j���

e�
i��j�

��� ���ijjj ���ij�� �

�

�
��i��jjj �

�
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Equating ����� and ����� now yields the transition point� i�e� the critical value for the

long half�axis �� of the elliptic stimuli� as a function of the width �� of the short half�axis

��



and of the width � of the neighborhood function� Fig� � shows the results of a numerical

evaluation of the transition point for general values of ��� �� A very interesting aspect of

the results depicted in Fig� � is that the critical �� is related to �� by an additive constant�

This behaviour can be made more explicit in at least one limiting case� the case of large

stimuli as compared to the neighborhood width � ���� �� 	 ��� Then� we obtain from

equating ����� and ����� after cutting common factors and developing to �rst order in

��������
��

��� � ���
� � �

�

��� � ���
����

��� ���	�

Further approximation of ���	� yields

�� � �� �
p
�� � �����

This further analysis not only explicitely reiterated the above�mentioned linear depen�

dence between ��� ��� We also �nd the additive constant to be proportional to the

neighborhood width ��

In the corresponding low�dimensional SOFM�model� the comparable stimulus parameter is

the orientation speci�city� which for elliptic stimuli is best identi�ed with the eccentricity

������ For orientation columns to emerge� a critical eccentricity has to be exceeded� with

the critical value of ����� being proportional to the neighborhood width � �Obermayer et

al�� �

��� So for the SOFM� �� and the critical �� are related by a multiplicative constant�

whereas in the case of the SOM it is an additive constant� a somewhat surprising di�erence�

Both constants depend linearly on the neighborhood width ��

��� Numerical Results with Reduced Stimulus Set

How do the analytical results obtained in the last section compare to simulations of

orientation maps" In this and the next subsection we adress this question in two steps�

First we simulate a map model which is as close as possible to the simpli�ed map model

analyzed in the last section� Comparison of the numerical results to Eq� ����� will allow us

to assess the quality of our analytical methods� In the next subsection we then proceed to

present numerical �plus some analytical� results for the full SOM orientation map model�

�	



This second step will allow us to assess the consequences of the simpli�cation of the

orientation map model considered in sections ��� and ����

We �rst simulated orientation maps of extension �� � ��� stimulated by ellipses with

Gaussian pro�le� width �� and �� 
 ��� centered randomly at one of the �� � �� input

channels� with either a horizontal or a vertical orientation� For each value � of the SOM

neighborhood width and �� of the shorter of the two widths of the ellipse� we varied the

elongation �� of the longer width of the stimuli� For the resulting maps� the average degree

of orientation O�x� of the receptive �elds was determined by using the same measure as

Miller ��

	��

O�x� �
jjvR�x�jjqPN��
n�� R�x� n��

� �����

where vR�x� �
PN��

n�� R�x� n� exp���in�N� is a complex number equal to the sum of

the best responses R�x� n� of the receptive �eld to stimuli with an orientation in the

interval #n��N� �n � ����N $ multiplied by a complex vector on the unit circle with the

corresponding orientation�

With this measure� an orientation speci�city of O � � corresponds to a receptive �eld

that responds equally well to stimuli with arbitrary orientation� Oriented receptive �elds

x yield O�x� � �� A typical result of the orientation speci�city as a function of the

stimulus elongation �� is depicted in Fig� �� The prominent feature is the steep increase

of O�x� beyond a critical value of ��� In a second stage of the simulations� we computed

the critical values for �� for various combinations of � and �� �see Fig� ��� For each of

the four examplary values of �� ���crit depends linearly on ���

���crit � a�� � b � �����

Doing an autoregression analysis on the ���crit�����curves yields the parameters a���� b���

�with correlation coe�cients r � ��

��� As shown in Fig� 
� the slope parameter has a

value of a � �� and does not depend on �� The o�set parameter b depends linearly on ��

Doing a second autoregression analysis� we �nally obtain

���crit � ���	�� � ��
�� � ��	� � �����

These numerical results coincide quite well with the analytically derived relation ������

The linear dependence of ���crit on �� is con�rmed� with a ��independent slope parameter

��



a � �� and a ��proportional o�set parameter b� For an assessment of the deviation between

the numerically observed b � ��
�����	� and the analytically derived b �
p
��� one has to

take into account the complicated three�step extraction process leading to the numerical

value� as well as the various approximations used to derive Eq� ������ Furthermore� the

rather small system size might also lead to some quantitative deviations� In summary we

regard the agreement between calculation and simulation as very good�

��� Results with Full Stimulus Set

In order to carry out the analytic evaluation of Ev for the orientation map� we considered

a reduced stimulus set� Now� we lift this restriction and investigate orientation maps with

full stimulus ensembles� i�e� with ensembles containing a large number of possible center

positions and orientations�

Two complications with regard to an evaluation of the Ev can result� If we still know

the tesselation of stimulus space� but cannot analytically evaluate the sums in Eq� �����

anymore� we can simply take resort to a numerical summation� In the present example�

with many possible stimulus orientations and locations per neuron� this is the case for the

trivially structured map with non�oriented receptive �elds� A more di�cult case arises if

we cannot make simple assumptions about the tesselation anymore �as is the case for the

map solution with oriented receptive �elds�� Here the following approximation scheme

for Ev can be applied� One assumes that each neuron is best�matching for an equal

number 	 of stimuli� One then picks one test stimulus vtest� and determines the 	 � �

further stimuli which lie closest to vtest� The mutual squared distances evaluated for this

group of stimuli then yield an approximation to Ev in the limit of � � �� Using this

approximation� we �nd for the full stimulus set again a linear relation ���crit � ��� b �see

Fig� ���� Simulations of SOM�orientation maps with full stimulus ensemble �nally yield

results very similar to those obtained with the restricted stimulus ensemble �Fig� ���� in

this way justifying a posteriori the approximation used in subsections ��� and ����

�� Discussion und Conclusions

In the present paper we introduced a new method to evaluate structures emerging in

high�dimensional SOMs� This method opens a �rst analytical access to the phase tran�

��



sition properties of this rather general algorithm for neural map self�organization� Our

method does not require the evaluation of the receptive �eld pro�les which emerge for

the individual neurons� Instead� it relies on an evaluation of the way the stimulus space

is tesselated� i�e� distributed among the di�erent neurons� This is advantageous� because

the receptive �eld pro�les change with varying parameters of the stimulus distribution

or the learning algorithm even within one qualitative type of map solution whereas the

tesselation remains identical�

The analysis of two exemplary problems showed that the phase transition properties

of high�dimensional SOM�maps can di�er from those of low�dimensional SOFMs� In the

case of the 	�neuron example� we found a state of the high�dimensional map� the ��neuron

type solution� which cannot occur in the low�dimensional map at all� In addition� while

the transition from the trivial line�like solution to the non�trivial box�like and house�like

solutions showed a strong dependence on the neighborhood width � in the SOFM model�

the transition in the high�dimensional problem was well determined by the geometry of

the problem alone�

Our second example is the analysis of a SOM�based model for the development of orien�

tation maps� The high degree of abstraction of the SOM provokes questions with regard

to the biological plausibility of such a model� Here� one of the central issues is that of

cortical �competition�� causing a localized cortical response to a single stimulus� with

a strongly peaked point spread function� This assumption is realized in a particularly

straightforward way by the SOM�winner�take�all rule� plus the Gaussian neighborhood

function� In more explicit form� cortical competition by lateral inhibition was already

incorporated in other� less abstracted models �Malsburg� �
��� and was recently observed

in a highly detailed simulation of cortical response properties to oriented stimuli �Somers

et al�� �

��� Second� high�dimensional SOM�models as investigated in this paper describe

and self�organize receptive �elds in terms of synaptic weight distributions� This level of

description avoids the often used feature map approximation and thus is easier to interpret

in biological terms� It allows to investigate maps with receptive �elds which cannot be

parametrized by linear operators� Third� the present model assumes a single input layer

with oriented stimuli� Such stimuli would occur in patterned vision� the role of which for

��



the development of orientation maps has been underlined in a study by Chapman and

Stryker ��

��� Our study shows that under these circumstances a critical orientation of

the stimuli has to be exceeded for oriented receptive �elds to develop�

This result is particularly interesting in comparison to other high�dimensional orientation

map models� In so�called correlation�based models� it was found that oriented receptive

�elds can emerge as a consequence of competition between two layers of ON�center and

OFF�center cells even if the correlation function of activity between the two layers is

circularly symmetric �Miller� �

�� �

	� Miyashita and Tanaka� �

��� There� orientation

speci�city results from a segregation between ON�center and OFF�center inputs within a

single receptive �eld� Even though these models are formulated in terms of correlation

functions� and not of individual stimuli� their results should also apply to a set of circular

symmetric stimuli� i�e� to a vanishing di�erence between elongations �� and ��� While the

present study proves that a corresponding break of symmetry cannot occur with stimuli in

a single input layer� the question has to be addressed whether or not the SOM framework

allows a break of rotational symmetry if the projection assumption of the correlation�

based models is adopted� In case the ON�center and OFF�center segregation mechanism

can also occur in principle in a SOM� then the present antagonism between this scenario

and the assumption of oriented stimuli will give way to a more combined point of view�

Quantitative aspects of orientation map development� like those raised by the Chapman

and Stryker experiment� can be addressed by adjusting the balance between the two

development mechanisms� We expect that our method will prove to be a valuable tool in

the investigation of these questions�

Appendix �� Calculation of the critical box�width for the ��

neuron map

To calculate the phase transition for the SOFM�version of the box�to�	�neuron example of

section 	 we need to evaluate Eq� ����� for the two tesselations of the input space induced

by the line�like and box�like map solutions� Since we have a continuum of stimuli now�

we have to replace the sums by integrals� Further� the periodic boundary conditions have

��



to be taken into account� Exploiting the symmetries of the geometry and the symmetry

between the 	 neurons� we arrive at the following distortion formulas�

�� Line�like solution�
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�� Box�like solution�
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Equating the two distortions to obtain the critical value for s� then yields Eq� �	�����

Appendix �� Calculation of Stimulus Overlap Integrals

For the calculation of the tesselation distortions in subsection ���� some stimulus overlap

integrals �ij�� were needed� where i denotes the horizontal displacement between stimuli�

j their vertical displacement� and �� indicates vertical �j� or horizontal ��� orientation of
the stimuli� Assuming large stimuli as compared to the lattice constant of the input space

���� �� 	 ��� we can approximate the sums occuring in Eq� ����� by integrals and �nd for

the �rst such overlap
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For �ij�� we can use the relation

�ij�� � �jijj � �����

Finally� combined horizontal and vertical orientations yield

�ijj� � �ji�j �����
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Figure Captions

Fig� �� Illustration of di�erences in the distance metric between high�dimensional �a�b�

and low�dimensional �c�d� maps� In each case� the input space is a square� For

the high�dimensional case� the input space is discretized as a square lattice� the

double bar stimulus is indicated as the �combined� gray regions� and the two exem�

plary receptive �elds in a and b are the �combined� black regions� The stimulus�

receptive �eld overlap is larger in b� so the respective neuron will be the winner in

the high�dimensional case� In the low�dimensional variant of this example� stimuli

and receptive �elds are represented by their centers of gravity �crosses and trian�

gles� resp��� Now� the neuron depicted in c �and a� is the winner� i�e� the high� and

low�dimensional variants of the map yield di�erent winners�

Fig� �� Caricatures �a�e� and results of simulations �f�j� for receptive �elds of neurons in

the high�dimensional variant of the 	�neuron problem �see text�� An input space

of 	M � �sM�M � ��� input channels� arranged as a rectangle� is mapped onto a

ring of 	 neurons� Parts a�e indicate regions of input channels� such that stimuli

centered within these regions are mapped to the same neuron� Either all stimuli are

mapped to only two of the neurons �a�� or to all four neurons� with the respective

regions being arranged in a line�like �b�� a box�like �c�� a house�like �d� or a wedge�

like �e� fashion� Depending on s and �� the �rst four of these solutions are found

numerically� Corresponding synaptic weight distributions wr for one exemplary

neuron are depicted in �f�i� as gray value images �f� s � ���� � � ����� g� s � ����

� � ����� h� s � ���� � � ����� i� s � ���� � � ����� j� not observed� parameters

for all simulations� ��
 iterations� learning rate � reduced exponentially from ��� to

��������

Fig� �� Phase diagrams for high�dimensional SOMs for the four�neuron example� �a�� ana�

lytically determined phase diagram in the ��s plane� The letters indicate the type of

solution in each of the regions �notation analogous to Fig� ��� �b�� numerical results

superimposed on the analytical phase diagram� The letters indicate the numerically

obtained type of map at the respective position in the ��s plane� averaged over at

least three realizations of the map at each parameter combination� The letter x

��



denotes con�icting numerical results� Number of iterations and learning schedule

same as in Fig� ��

Fig� 	� Phase diagram for low�dimensional SOFMs version of the four�neuron example�

Here we evaluate only the transition between a line�like solution �indicated as b��

and a box�like solution �c�� see text�� Solid line� analytical result �	����� dashed line�

numerical result ���� � ��� iterations� � reduced exponentially from ���� to �������

virtually identical results were obtained with � � ���� ��������

Fig� �� Illustration of possible tesselations of a reduced stimulus space in a SOM�model

for the development of orientation maps� Stimuli are indicated as ellipses in the

lower square �retinal space�� map neurons as crosses in the upper square �orientation

map�� Case �a�� two stimuli of di�erent orientation but located at the same position

in retinal space are mapped to the same neuron �corresponding to a non�oriented

receptive �eld�� Case �b�� two stimuli with the same orientation but centered at

di�erent locations are combined �corresponding to oriented receptive �elds�� In

the latter case we assume for the arrangement of receptive �elds in the map that

neighboring neurons receive input from stimuli of the same orientation�

Fig� �� Critical length ���crit as a function of � and ��� obtained by equating Ev�non�ori and

Ev�ori as given by Eqs� ����� and ������ Note the linear increase of ���crit as a function

of � as well as of ���

Fig� �� Degree of orientation preferenceO in high�dimensional SOMs as a function of ��� the

longer half�axis of the elliptic stimuli� The maps were simulated using the reduced

stimulus set described in subsection ���� simulation parameters were � � �����

�� � ����� � � ���� ����� in � � ��	 steps� The error bars result from averaging O

over the receptive �elds�

Fig� �� Critical elongations ���crit for the non�oriented&oriented transition� as a function

of the elongation �� at di�erent values of �� The symbols indicate the results of

simulations� the solid lines are autoregression �ts to these points� The dotted lines

show the extrapolation back to �� � �� Other simulation parameters same as in

Fig� ��

�	



Fig� 
� Slope a��� �stars� and o�set b��� �crosses� of the lines ���crit � a�� � b in Fig� ��

The lines are the results of an autoregression analysis of the a���� b����points�

Fig� ��� Analogous to Fig� �� but for the full stimulus ensemble�
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